Observed Tropical Cyclone Eye Thermal Anomaly Profiles Extending above 300 hPa
نویسندگان
چکیده
منابع مشابه
Tropical Cyclone Eye Thermodynamics
In intense tropical cyclones, sea level pressures at the center are 50–100 hPa lower than outside the vortex, but only 10–30 hPa of the total pressure fall occurs inside the eye between the eyewall and the center. Warming by dry subsidence accounts for this fraction of the total hydrostatic pressure fall. Convection in the eyewall causes the warming by doing work on the eye to force the thermal...
متن کاملTropical Cyclone Diurnal Cycle as Observed by TRMM.
Previous work has indicated a clear, consistent diurnal cycle in rainfall and cold cloudiness coverage around tropical cyclones. This cycle may have important implications for structure and intensity changes of these storms and the forecasting of such changes. The goal of this paper is to use passive and active microwave measurements from the Tropical Rainfall Measuring Mission (TRMM) Microwave...
متن کاملUpward electrical discharges observed above Tropical Depression Dorian
Observation of upward electrical discharges from thunderstorms has been sporadically reported in the scientific literature. According to their terminal altitudes, they are classified as starters (20-30 km), jets (40-50 km) and gigantic jets (70-90 km). They not only have a significant impact on the occupied atmospheric volumes but also electrically couple different atmospheric regions. However,...
متن کاملPredicting Tropical Cyclone Genesis
The long-term goal of this project is to provide probabilistic genesis forecast guidance to operational forecasters and develop a genesis index to provide guidance for operational dynamical model prediction of tropical cyclone (TC) genesis. Once regions of high TC genesis probability are identified, a movable, multi-nested version of the COAMPS with resolution of roughly 3 km or less in the inn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monthly Weather Review
سال: 2013
ISSN: 0027-0644,1520-0493
DOI: 10.1175/mwr-d-13-00021.1